Plant and Microbial Biotechnology

The Plant-Microbe Interactions Group specialises in the discovery of interesting new genes from plants and microorganisms. This team develops disease-resistant plants and identifies novel compounds from microbial communities associated with the rhizosphere of plants.

We use a Functional Genomics approach to study beneficial and parasitic interactions between plants and microbes. Regulation of defence signalling genes can lead to disease resistance. In conjunction with industry we're working on improving crop plants for resistance against fungi, bacteria, viruses and nematodes.

Click here for our Start-up Nexgen Plants and find out how we implement new virus resistance in crop plants.

In our microbial community project, functional gene microarrays and next-gen sequencing are used in a metatranscriptomics approach to characterise highly diverse microbial communities associated with plants, capturing microbial activity profiles irrespective of species.


Hydrate Gel Filtration

Tap water in many Asian, African, South and Central American countries is considered unsafe to drink. Even tap water in industrialised nations may still contains hundreds of bacterium and viral pathogens. Schenklab's Hydrate Gel Filtration project aims to develop simple low-cost prototypes based on our patented technology to enable production of affordable, clean, safe water.

We have developed a new, low-cost nanofiltration-range of separation technologies using a gelatinous layer of hydrate that enables simple and high flux production of filtered water.

The fact that 98% of the hydrate gel consists of water makes Hydrate Gel Filtration ideal for high-flux, low-cost small and large-scale applications in water purification. Properties include at least 4-fold higher unassisted and pressure-assisted flux rates than currently available membranes, pressure-resistance, impenetrability to filtered particles, easy cleaning by backwashing and simple, cost-effective replacement of low-cost gel filter cartridges

As a result, filtration of water (e.g. turbid river water) contaminated with colloids and microorganisms, yields clear water free of measurable particles or detectable microorganisms (including viruses; 99.99999% removal), while small water-soluble molecules (salts, sugars, proteins) remain in the filtrate. Hydrophobic molecules, such as oils and hydrocarbons cannot pass the gel layer.

We have demonstrated the viability of hydrate gel filtration at scale with high-flux, low-cost water purification devices and are currently working with the University of Queensland's commercialisation team, UniQuest on multiple pilot projects.

For more information, please contact us.


Microalgae - A renewable source of feed, fuel and nutraceuticals

The Algae Biotechnology Group aims to sustainably produce oil, protein-rich biomass and high-value products from microalgae.

Microalgae can be farmed without competing for arable land and food production using nearly any type of water (fresh, brackish, seawater or nutrient-rich wastewater). We identify local freshwater and marine strains that are efficient producers of lipids, crude protein and neutraceuticals, then optimise these by using adaptive evolution and metabolic engineering. Our lab takes a "Non-GM" approach to strain improvement specialising in aquatic-crop optimisation aimed at providing our industry partners with cost-effective oil, animal feed and neutraceutical products. We also use the small aquatic plant Lemna for water treatment and efficient nutrient recovery from farm effluents

We have developed simple, low-cost technologies for all steps of algae cultivation, harvesting and extraction processes. This enables simple, farm-scale microalgae production, providing algal based products to the neutraceutical, animal feed biodiesel markets. Our technologies are demonstrated on large scale at the UQ Algae Energy Farm. in Pinjarra Hills, Queensland, Australia. Apart from microalgae, the small aquatic plant Lemna is used for water treatment and efficient nutrient recovery from farm effluents.

This demonstration farm unlocks microalgae’s potential as a zero-waste bio-refinery concept, using a range of different microalgae to produce oil for omega-3 fatty acids and biodiesel, as well as protein-rich biomass for food and animal feed. For example, remaining biomass after oil extraction is used for high-value protein extraction or animal feed. The option to combine oil extraction with anaerobic digestion of the remaining biomass enables closing the loop for sustainable nutrient recycling and organic farming.

For our industry partners we offer a 360° approach to algae cultivation, harvesting and extraction. This includes supply of suitable strains, training at the Algae Energy Farm, assistance with farm design, techno-economic analyses for various production scenarios, as well as assistance during farm construction and operation during the first 12 months.


Our Partners